Bhuwan Dhingra


2023

pdf bib
Valla: Standardizing and Benchmarking Authorship Attribution and Verification Through Empirical Evaluation and Comparative Analysis
Jacob Tyo | Bhuwan Dhingra | Zachary C. Lipton
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Selectively Answering Ambiguous Questions
Jeremy Cole | Michael Zhang | Daniel Gillick | Julian Eisenschlos | Bhuwan Dhingra | Jacob Eisenstein
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Trustworthy language models should abstain from answering questions when they do not know the answer. However, the answer to a question can be unknown for a variety of reasons. Prior research has focused on the case in which the question is clear and the answer is unambiguous but possibly unknown. However, the answer to a question can also be unclear due to uncertainty of the questioner’s intent or context. We investigate question answering from this perspective, focusing on answering a subset of questions with a high degree of accuracy, from a set of questions in which many are inherently ambiguous. In this setting, we find that the most reliable approach to calibration involves quantifying repetition within a set of sampled model outputs, rather than the model’s likelihood or self-verification as used in prior work. We find this to be the case across different types of uncertainty, varying model scales and both with or without instruction tuning. Our results suggest that sampling-based confidence scores help calibrate answers to relatively unambiguous questions, with more dramatic improvements on ambiguous questions.

pdf bib
Salient Span Masking for Temporal Understanding
Jeremy R. Cole | Aditi Chaudhary | Bhuwan Dhingra | Partha Talukdar
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Salient Span Masking (SSM) has shown itself to be an effective strategy to improve closed-book question answering performance. SSM extends general masked language model pretraining by creating additional unsupervised training sentences that mask a single entity or date span, thus oversampling factual information. Despite the success of this paradigm, the span types and sampling strategies are relatively arbitrary and not widely studied for other tasks. Thus, we investigate SSM from the perspective of temporal tasks, where learning a good representation of various temporal expressions is important. To that end, we introduce Temporal Span Masking (TSM) intermediate training. First, we find that SSM alone improves the downstream performance on three temporal tasks by an avg. +5.8 points. Further, we are able to achieve additional improvements (avg. +0.29 points) by adding the TSM task. These comprise the new best reported results on the targeted tasks. Our analysis suggests that the effectiveness of SSM stems from the sentences chosen in the training data rather than the mask choice: sentences with entities frequently also contain temporal expressions. Nonetheless, the additional targeted spans of TSM can still improve performance, especially in a zero-shot context.

pdf bib
DiffQG: Generating Questions to Summarize Factual Changes
Jeremy R. Cole | Palak Jain | Julian Martin Eisenschlos | Michael J.Q. Zhang | Eunsol Choi | Bhuwan Dhingra
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Identifying the difference between two versions of the same article is useful to update knowledge bases and to understand how articles evolve. Paired texts occur naturally in diverse situations: reporters write similar news stories and maintainers of authoritative websites must keep their information up to date. We propose representing factual changes between paired documents as question-answer pairs, where the answer to the same question differs between two versions. We find that question-answer pairs can flexibly and concisely capture the updated contents. Provided with paired documents, annotators identify questions that are answered by one passage but answered differently or cannot be answered by the other. We release DiffQG which consists of 759 QA pairs and 1153 examples of paired passages with no factual change. These questions are intended to be both unambiguous and information-seeking and involve complex edits, pushing beyond the capabilities of current question generation and factual change detection systems. Our dataset summarizes the changes between two versions of the document as questions and answers, studying automatic update summarization in a novel way.

pdf bib
Learning the Legibility of Visual Text Perturbations
Dev Seth | Rickard Stureborg | Danish Pruthi | Bhuwan Dhingra
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Many adversarial attacks in NLP perturb text in puts to produce visually similar strings (‘ergo’, ‘εrgo’) which are legible to humans but degrade model performance. Although preserving legibility is a necessary condition for text perturbation, little work has been done to systematically characterize it; instead, legibility is typically loosely enforced via intuitions around the nature and extent of perturbations. Particularly, it is unclear to what extent can inputs be perturbed while preserving legibility, or how to quantify the legibility of a perturbed string. In this work, we address this gap by learning models that predict the legibility of a perturbed string, and rank candidate perturbations based on their legibility. To do so, we collect and release LEGIT, a human-annotated dataset comprising the legibility of visually perturbed text. Using this dataset, we build both text- and vision-based models which achieve up to 0.91 F score in predicting whether an input is legible, and an accuracy of 0.86 in predicting which of two given perturbations is more legible. Additionally, we discover that legible perturbations from the LEGIT dataset are more effective at lowering the performance of NLP models than best-known attack strategies, suggesting that current models may be vulnerable to a broad range of perturbations beyond what is captured by existing visual attacks.

pdf bib
Hierarchical Multi-Instance Multi-Label Learning for Detecting Propaganda Techniques
Anni Chen | Bhuwan Dhingra
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

Since the introduction of the SemEval 2020 Task 11 (CITATION), several approaches have been proposed in the literature for classifying propagandabased on the rhetorical techniques used to influence readers. These methods, however, classify one span at a time, ignoring dependencies from the labels of other spans within the same context. In this paper, we approach propaganda technique classification as aMulti-Instance Multi-Label (MIML) learning problem (CITATION) and propose a simple RoBERTa-based model (CITATION) for classifying all spans in an article simultaneously. Further, we note that, due to the annotation process whereannotators classified the spans by following a decision tree,there is an inherent hierarchical relationship among the differenttechniques, which existing approaches ignore. We incorporate these hierarchical label dependencies by adding an auxiliary classifier for each node in the decision tree to the training objective and ensembling the predictions from the original and auxiliary classifiers at test time. Overall, our model leads to an absolute improvement of 2.47% micro-F1 over the model from the shared task winning team in a cross-validation setup and is the best performing non-ensemble model on the shared task leaderboard.

2022

pdf bib
Time-Aware Language Models as Temporal Knowledge Bases
Bhuwan Dhingra | Jeremy R. Cole | Julian Martin Eisenschlos | Daniel Gillick | Jacob Eisenstein | William W. Cohen
Transactions of the Association for Computational Linguistics, Volume 10

Many facts come with an expiration date, from the name of the President to the basketball team Lebron James plays for. However, most language models (LMs) are trained on snapshots of data collected at a specific moment in time. This can limit their utility, especially in the closed-book setting where the pretraining corpus must contain the facts the model should memorize. We introduce a diagnostic dataset aimed at probing LMs for factual knowledge that changes over time and highlight problems with LMs at either end of the spectrum—those trained on specific slices of temporal data, as well as those trained on a wide range of temporal data. To mitigate these problems, we propose a simple technique for jointly modeling text with its timestamp. This improves memorization of seen facts from the training time period, as well as calibration on predictions about unseen facts from future time periods. We also show that models trained with temporal context can be efficiently “refreshed” as new data arrives, without the need for retraining from scratch.

pdf bib
Evaluating Explanations: How Much Do Explanations from the Teacher Aid Students?
Danish Pruthi | Rachit Bansal | Bhuwan Dhingra | Livio Baldini Soares | Michael Collins | Zachary C. Lipton | Graham Neubig | William W. Cohen
Transactions of the Association for Computational Linguistics, Volume 10

While many methods purport to explain predictions by highlighting salient features, what aims these explanations serve and how they ought to be evaluated often go unstated. In this work, we introduce a framework to quantify the value of explanations via the accuracy gains that they confer on a student model trained to simulate a teacher model. Crucially, the explanations are available to the student during training, but are not available at test time. Compared with prior proposals, our approach is less easily gamed, enabling principled, automatic, model-agnostic evaluation of attributions. Using our framework, we compare numerous attribution methods for text classification and question answering, and observe quantitative differences that are consistent (to a moderate to high degree) across different student model architectures and learning strategies.1

pdf bib
Proceedings of the First Workshop on Ever Evolving NLP (EvoNLP)
Francesco Barbieri | Jose Camacho-Collados | Bhuwan Dhingra | Luis Espinosa-Anke | Elena Gribovskaya | Angeliki Lazaridou | Daniel Loureiro | Leonardo Neves
Proceedings of the First Workshop on Ever Evolving NLP (EvoNLP)

pdf bib
Characterizing the Efficiency vs. Accuracy Trade-off for Long-Context NLP Models
Phyllis Ang | Bhuwan Dhingra | Lisa Wu Wills
Proceedings of NLP Power! The First Workshop on Efficient Benchmarking in NLP

With many real-world applications of Natural Language Processing (NLP) comprising of long texts, there has been a rise in NLP benchmarks that measure the accuracy of models that can handle longer input sequences. However, these benchmarks do not consider the trade-offs between accuracy, speed, and power consumption as input sizes or model sizes are varied. In this work, we perform a systematic study of this accuracy vs. efficiency trade-off on two widely used long-sequence models - Longformer-Encoder-Decoder (LED) and Big Bird - during fine-tuning and inference on four datasets from the SCROLLS benchmark. To study how this trade-off differs across hyperparameter settings, we compare the models across four sequence lengths (1024, 2048, 3072, 4096) and two model sizes (base and large) under a fixed resource budget. We find that LED consistently achieves better accuracy at lower energy costs than Big Bird. For summarization, we find that increasing model size is more energy efficient than increasing sequence length for higher accuracy. However, this comes at the cost of a large drop in inference speed. For question answering, we find that smaller models are both more efficient and more accurate due to the larger training batch sizes possible under a fixed resource budget.

pdf bib
ASQA: Factoid Questions Meet Long-Form Answers
Ivan Stelmakh | Yi Luan | Bhuwan Dhingra | Ming-Wei Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent progress on open domain factoid question answering (QA) does not easily transfer to the task of long-form QA, where the goal is to answer questions that require in-depth explanations. The hurdles include a lack of high-quality data and the absence of a well-defined notion of an answer’s quality. In this work, we address these problems by releasing a novel dataset and a task that we call ASQA (Answer Summaries for Questions which are Ambiguous); and proposing a reliable metric for measuring performance on ASQA. Our task focuses on ambiguous factoid questions which have different correct answers depending on the interpretation. Answers to ambiguous questions should combine factual information from multiple sources into a coherent long-form summary that resolves the ambiguity. In contrast to existing long-form QA tasks (such as ELI5), ASQA admits a clear notion of correctness: a user faced with a good summary should be able to answer different interpretations of the original ambiguous question. Our analysis demonstrates an agreement between this metric and human judgments, and reveals a considerable gap between human performance and strong baselines.

2021

pdf bib
Fool Me Twice: Entailment from Wikipedia Gamification
Julian Eisenschlos | Bhuwan Dhingra | Jannis Bulian | Benjamin Börschinger | Jordan Boyd-Graber
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We release FoolMeTwice (FM2 for short), a large dataset of challenging entailment pairs collected through a fun multi-player game. Gamification encourages adversarial examples, drastically lowering the number of examples that can be solved using “shortcuts” compared to other popular entailment datasets. Players are presented with two tasks. The first task asks the player to write a plausible claim based on the evidence from a Wikipedia page. The second one shows two plausible claims written by other players, one of which is false, and the goal is to identify it before the time runs out. Players “pay” to see clues retrieved from the evidence pool: the more evidence the player needs, the harder the claim. Game-play between motivated players leads to diverse strategies for crafting claims, such as temporal inference and diverting to unrelated evidence, and results in higher quality data for the entailment and evidence retrieval tasks. We open source the dataset and the game code.

pdf bib
Differentiable Open-Ended Commonsense Reasoning
Bill Yuchen Lin | Haitian Sun | Bhuwan Dhingra | Manzil Zaheer | Xiang Ren | William Cohen
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Current commonsense reasoning research focuses on developing models that use commonsense knowledge to answer multiple-choice questions. However, systems designed to answer multiple-choice questions may not be useful in applications that do not provide a small list of candidate answers to choose from. As a step towards making commonsense reasoning research more realistic, we propose to study open-ended commonsense reasoning (OpenCSR) — the task of answering a commonsense question without any pre-defined choices — using as a resource only a corpus of commonsense facts written in natural language. OpenCSR is challenging due to a large decision space, and because many questions require implicit multi-hop reasoning. As an approach to OpenCSR, we propose DrFact, an efficient Differentiable model for multi-hop Reasoning over knowledge Facts. To evaluate OpenCSR methods, we adapt several popular commonsense reasoning benchmarks, and collect multiple new answers for each test question via crowd-sourcing. Experiments show that DrFact outperforms strong baseline methods by a large margin.

pdf bib
Investigating the Effect of Background Knowledge on Natural Questions
Vidhisha Balachandran | Bhuwan Dhingra | Haitian Sun | Michael Collins | William Cohen
Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

Existing work shows the benefits of integrating KBs with textual evidence for QA only on questions that are answerable by KBs alone (Sun et al., 2019). In contrast, real world QA systems often have to deal with questions that might not be directly answerable by KBs. Here, we investigate the effect of integrating background knowledge from KBs for the Natural Questions (NQ) task. We create a subset of the NQ data, Factual Questions (FQ), where the questions have evidence in the KB in the form of paths that link question entities to answer entities but still must be answered using text, to facilitate further research into KB integration methods. We propose and analyze a simple, model-agnostic approach for incorporating KB paths into text-based QA systems and establish a strong upper bound on FQ for our method using an oracle retriever. We show that several variants of Personalized PageRank based fact retrievers lead to a low recall of answer entities and consequently fail to improve QA performance. Our results suggest that fact retrieval is a bottleneck for integrating KBs into real world QA datasets

2020

pdf bib
Weakly- and Semi-supervised Evidence Extraction
Danish Pruthi | Bhuwan Dhingra | Graham Neubig | Zachary C. Lipton
Findings of the Association for Computational Linguistics: EMNLP 2020

For many prediction tasks, stakeholders desire not only predictions but also supporting evidence that a human can use to verify its correctness. However, in practice, evidence annotations may only be available for a minority of training examples (if available at all). In this paper, we propose new methods to combine few evidence annotations (strong semi-supervision) with abundant document-level labels (weak supervision) for the task of evidence extraction. Evaluating on two classification tasks that feature evidence annotations, we find that our methods outperform baselines adapted from the interpretability literature to our task. Our approach yields gains with as few as hundred evidence annotations.

pdf bib
Learning to Deceive with Attention-Based Explanations
Danish Pruthi | Mansi Gupta | Bhuwan Dhingra | Graham Neubig | Zachary C. Lipton
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Attention mechanisms are ubiquitous components in neural architectures applied to natural language processing. In addition to yielding gains in predictive accuracy, attention weights are often claimed to confer interpretability, purportedly useful both for providing insights to practitioners and for explaining why a model makes its decisions to stakeholders. We call the latter use of attention mechanisms into question by demonstrating a simple method for training models to produce deceptive attention masks. Our method diminishes the total weight assigned to designated impermissible tokens, even when the models can be shown to nevertheless rely on these features to drive predictions. Across multiple models and tasks, our approach manipulates attention weights while paying surprisingly little cost in accuracy. Through a human study, we show that our manipulated attention-based explanations deceive people into thinking that predictions from a model biased against gender minorities do not rely on the gender. Consequently, our results cast doubt on attention’s reliability as a tool for auditing algorithms in the context of fairness and accountability.

pdf bib
ToTTo: A Controlled Table-To-Text Generation Dataset
Ankur Parikh | Xuezhi Wang | Sebastian Gehrmann | Manaal Faruqui | Bhuwan Dhingra | Diyi Yang | Dipanjan Das
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present ToTTo, an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. To obtain generated targets that are natural but also faithful to the source table, we introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia. We present systematic analyses of our dataset and annotation process as well as results achieved by several state-of-the-art baselines. While usually fluent, existing methods often hallucinate phrases that are not supported by the table, suggesting that this dataset can serve as a useful research benchmark for high-precision conditional text generation.

2019

pdf bib
Text Generation with Exemplar-based Adaptive Decoding
Hao Peng | Ankur Parikh | Manaal Faruqui | Bhuwan Dhingra | Dipanjan Das
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We propose a novel conditioned text generation model. It draws inspiration from traditional template-based text generation techniques, where the source provides the content (i.e., what to say), and the template influences how to say it. Building on the successful encoder-decoder paradigm, it first encodes the content representation from the given input text; to produce the output, it retrieves exemplar text from the training data as “soft templates,” which are then used to construct an exemplar-specific decoder. We evaluate the proposed model on abstractive text summarization and data-to-text generation. Empirical results show that this model achieves strong performance and outperforms comparable baselines.

pdf bib
Probing Biomedical Embeddings from Language Models
Qiao Jin | Bhuwan Dhingra | William Cohen | Xinghua Lu
Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP

Contextualized word embeddings derived from pre-trained language models (LMs) show significant improvements on downstream NLP tasks. Pre-training on domain-specific corpora, such as biomedical articles, further improves their performance. In this paper, we conduct probing experiments to determine what additional information is carried intrinsically by the in-domain trained contextualized embeddings. For this we use the pre-trained LMs as fixed feature extractors and restrict the downstream task models to not have additional sequence modeling layers. We compare BERT (Devlin et al. 2018), ELMo (Peters et al., 2018), BioBERT (Lee et al., 2019) and BioELMo, a biomedical version of ELMo trained on 10M PubMed abstracts. Surprisingly, while fine-tuned BioBERT is better than BioELMo in biomedical NER and NLI tasks, as a fixed feature extractor BioELMo outperforms BioBERT in our probing tasks. We use visualization and nearest neighbor analysis to show that better encoding of entity-type and relational information leads to this superiority.

pdf bib
PubMedQA: A Dataset for Biomedical Research Question Answering
Qiao Jin | Bhuwan Dhingra | Zhengping Liu | William Cohen | Xinghua Lu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We introduce PubMedQA, a novel biomedical question answering (QA) dataset collected from PubMed abstracts. The task of PubMedQA is to answer research questions with yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?) using the corresponding abstracts. PubMedQA has 1k expert-annotated, 61.2k unlabeled and 211.3k artificially generated QA instances. Each PubMedQA instance is composed of (1) a question which is either an existing research article title or derived from one, (2) a context which is the corresponding abstract without its conclusion, (3) a long answer, which is the conclusion of the abstract and, presumably, answers the research question, and (4) a yes/no/maybe answer which summarizes the conclusion. PubMedQA is the first QA dataset where reasoning over biomedical research texts, especially their quantitative contents, is required to answer the questions. Our best performing model, multi-phase fine-tuning of BioBERT with long answer bag-of-word statistics as additional supervision, achieves 68.1% accuracy, compared to single human performance of 78.0% accuracy and majority-baseline of 55.2% accuracy, leaving much room for improvement. PubMedQA is publicly available at https://pubmedqa.github.io.

pdf bib
Handling Divergent Reference Texts when Evaluating Table-to-Text Generation
Bhuwan Dhingra | Manaal Faruqui | Ankur Parikh | Ming-Wei Chang | Dipanjan Das | William Cohen
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Automatically constructed datasets for generating text from semi-structured data (tables), such as WikiBio, often contain reference texts that diverge from the information in the corresponding semi-structured data. We show that metrics which rely solely on the reference texts, such as BLEU and ROUGE, show poor correlation with human judgments when those references diverge. We propose a new metric, PARENT, which aligns n-grams from the reference and generated texts to the semi-structured data before computing their precision and recall. Through a large scale human evaluation study of table-to-text models for WikiBio, we show that PARENT correlates with human judgments better than existing text generation metrics. We also adapt and evaluate the information extraction based evaluation proposed by Wiseman et al (2017), and show that PARENT has comparable correlation to it, while being easier to use. We show that PARENT is also applicable when the reference texts are elicited from humans using the data from the WebNLG challenge.

pdf bib
Combating Adversarial Misspellings with Robust Word Recognition
Danish Pruthi | Bhuwan Dhingra | Zachary C. Lipton
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

To combat adversarial spelling mistakes, we propose placing a word recognition model in front of the downstream classifier. Our word recognition models build upon the RNN semi-character architecture, introducing several new backoff strategies for handling rare and unseen words. Trained to recognize words corrupted by random adds, drops, swaps, and keyboard mistakes, our method achieves 32% relative (and 3.3% absolute) error reduction over the vanilla semi-character model. Notably, our pipeline confers robustness on the downstream classifier, outperforming both adversarial training and off-the-shelf spell checkers. Against a BERT model fine-tuned for sentiment analysis, a single adversarially-chosen character attack lowers accuracy from 90.3% to 45.8%. Our defense restores accuracy to 75%. Surprisingly, better word recognition does not always entail greater robustness. Our analysis reveals that robustness also depends upon a quantity that we denote the sensitivity.

2018

pdf bib
Embedding Text in Hyperbolic Spaces
Bhuwan Dhingra | Christopher Shallue | Mohammad Norouzi | Andrew Dai | George Dahl
Proceedings of the Twelfth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-12)

Natural language text exhibits hierarchical structure in a variety of respects. Ideally, we could incorporate our prior knowledge of this hierarchical structure into unsupervised learning algorithms that work on text data. Recent work by Nickel and Kiela (2017) proposed using hyperbolic instead of Euclidean embedding spaces to represent hierarchical data and demonstrated encouraging results when embedding graphs. In this work, we extend their method with a re-parameterization technique that allows us to learn hyperbolic embeddings of arbitrarily parameterized objects. We apply this framework to learn word and sentence embeddings in hyperbolic space in an unsupervised manner from text corpora. The resulting embeddings seem to encode certain intuitive notions of hierarchy, such as word-context frequency and phrase constituency. However, the implicit continuous hierarchy in the learned hyperbolic space makes interrogating the model’s learned hierarchies more difficult than for models that learn explicit edges between items. The learned hyperbolic embeddings show improvements over Euclidean embeddings in some – but not all – downstream tasks, suggesting that hierarchical organization is more useful for some tasks than others.

pdf bib
AttentionMeSH: Simple, Effective and Interpretable Automatic MeSH Indexer
Qiao Jin | Bhuwan Dhingra | William Cohen | Xinghua Lu
Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering

There are millions of articles in PubMed database. To facilitate information retrieval, curators in the National Library of Medicine (NLM) assign a set of Medical Subject Headings (MeSH) to each article. MeSH is a hierarchically-organized vocabulary, containing about 28K different concepts, covering the fields from clinical medicine to information sciences. Several automatic MeSH indexing models have been developed to improve the time-consuming and financially expensive manual annotation, including the NLM official tool – Medical Text Indexer, and the winner of BioASQ Task5a challenge – DeepMeSH. However, these models are complex and not interpretable. We propose a novel end-to-end model, AttentionMeSH, which utilizes deep learning and attention mechanism to index MeSH terms to biomedical text. The attention mechanism enables the model to associate textual evidence with annotations, thus providing interpretability at the word level. The model also uses a novel masking mechanism to enhance accuracy and speed. In the final week of BioASQ Chanllenge Task6a, we ranked 2nd by average MiF using an on-construction model. After the contest, we achieve close to state-of-the-art MiF performance of ∼ 0.684 using our final model. Human evaluations show AttentionMeSH also provides high level of interpretability, retrieving about 90% of all expert-labeled relevant words given an MeSH-article pair at 20 output.

pdf bib
Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
Haitian Sun | Bhuwan Dhingra | Manzil Zaheer | Kathryn Mazaitis | Ruslan Salakhutdinov | William Cohen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Open Domain Question Answering (QA) is evolving from complex pipelined systems to end-to-end deep neural networks. Specialized neural models have been developed for extracting answers from either text alone or Knowledge Bases (KBs) alone. In this paper we look at a more practical setting, namely QA over the combination of a KB and entity-linked text, which is appropriate when an incomplete KB is available with a large text corpus. Building on recent advances in graph representation learning we propose a novel model, GRAFT-Net, for extracting answers from a question-specific subgraph containing text and KB entities and relations. We construct a suite of benchmark tasks for this problem, varying the difficulty of questions, the amount of training data, and KB completeness. We show that GRAFT-Net is competitive with the state-of-the-art when tested using either KBs or text alone, and vastly outperforms existing methods in the combined setting.

pdf bib
Neural Models for Reasoning over Multiple Mentions Using Coreference
Bhuwan Dhingra | Qiao Jin | Zhilin Yang | William Cohen | Ruslan Salakhutdinov
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Many problems in NLP require aggregating information from multiple mentions of the same entity which may be far apart in the text. Existing Recurrent Neural Network (RNN) layers are biased towards short-term dependencies and hence not suited to such tasks. We present a recurrent layer which is instead biased towards coreferent dependencies. The layer uses coreference annotations extracted from an external system to connect entity mentions belonging to the same cluster. Incorporating this layer into a state-of-the-art reading comprehension model improves performance on three datasets – Wikihop, LAMBADA and the bAbi AI tasks – with large gains when training data is scarce.

pdf bib
Simple and Effective Semi-Supervised Question Answering
Bhuwan Dhingra | Danish Danish | Dheeraj Rajagopal
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Recent success of deep learning models for the task of extractive Question Answering (QA) is hinged on the availability of large annotated corpora. However, large domain specific annotated corpora are limited and expensive to construct. In this work, we envision a system where the end user specifies a set of base documents and only a few labelled examples. Our system exploits the document structure to create cloze-style questions from these base documents; pre-trains a powerful neural network on the cloze style questions; and further fine-tunes the model on the labeled examples. We evaluate our proposed system across three diverse datasets from different domains, and find it to be highly effective with very little labeled data. We attain more than 50% F1 score on SQuAD and TriviaQA with less than a thousand labelled examples. We are also releasing a set of 3.2M cloze-style questions for practitioners to use while building QA systems.

2017

pdf bib
Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access
Bhuwan Dhingra | Lihong Li | Xiujun Li | Jianfeng Gao | Yun-Nung Chen | Faisal Ahmed | Li Deng
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper proposes KB-InfoBot - a multi-turn dialogue agent which helps users search Knowledge Bases (KBs) without composing complicated queries. Such goal-oriented dialogue agents typically need to interact with an external database to access real-world knowledge. Previous systems achieved this by issuing a symbolic query to the KB to retrieve entries based on their attributes. However, such symbolic operations break the differentiability of the system and prevent end-to-end training of neural dialogue agents. In this paper, we address this limitation by replacing symbolic queries with an induced “soft” posterior distribution over the KB that indicates which entities the user is interested in. Integrating the soft retrieval process with a reinforcement learner leads to higher task success rate and reward in both simulations and against real users. We also present a fully neural end-to-end agent, trained entirely from user feedback, and discuss its application towards personalized dialogue agents.

pdf bib
Gated-Attention Readers for Text Comprehension
Bhuwan Dhingra | Hanxiao Liu | Zhilin Yang | William Cohen | Ruslan Salakhutdinov
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper we study the problem of answering cloze-style questions over documents. Our model, the Gated-Attention (GA) Reader, integrates a multi-hop architecture with a novel attention mechanism, which is based on multiplicative interactions between the query embedding and the intermediate states of a recurrent neural network document reader. This enables the reader to build query-specific representations of tokens in the document for accurate answer selection. The GA Reader obtains state-of-the-art results on three benchmarks for this task–the CNN & Daily Mail news stories and the Who Did What dataset. The effectiveness of multiplicative interaction is demonstrated by an ablation study, and by comparing to alternative compositional operators for implementing the gated-attention.

2016

pdf bib
Using Graphs of Classifiers to Impose Constraints on Semi-supervised Relation Extraction
Lidong Bing | William Cohen | Bhuwan Dhingra | Richard Wang
Proceedings of the 5th Workshop on Automated Knowledge Base Construction

pdf bib
Tweet2Vec: Character-Based Distributed Representations for Social Media
Bhuwan Dhingra | Zhong Zhou | Dylan Fitzpatrick | Michael Muehl | William Cohen
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)