Corby Rosset


2023

pdf bib
Augmenting Zero-Shot Dense Retrievers with Plug-in Mixture-of-Memories
Suyu Ge | Chenyan Xiong | Corby Rosset | Arnold Overwijk | Jiawei Han | Paul Bennett
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In this paper we improve the zero-shot generalization ability of language models via Mixture-Of-Memory Augmentation (MoMA), a mechanism that retrieves augmentation documents from multiple information corpora (external memories), with the option to “plug in” unseen memory at inference time. We develop a joint learning mechanism that trains the augmentation component with latent labels derived from the end retrieval task, paired with hard negatives from the memory mixture. We instantiate the model in a zero-shot dense retrieval setting by augmenting strong T5-based retrievers with MoMA. With only T5-base, our model obtains strong zero-shot retrieval accuracy on the eighteen tasks included in the standard BEIR benchmark, outperforming some systems with larger model sizes. As a plug-in-play model, our model can efficiently generalize to any unseen corpus, meanwhile achieving comparable or even better performance than methods relying on target-specific pretraining. Our analysis further illustrates the necessity of augmenting with mixture-of-memory for robust generalization, the benefits of augmentation learning, and how MoMA utilizes the plug-in memory at inference time without changing its parameters. Our code can be found at https://github.com/gesy17/MoMA.

pdf bib
Axiomatic Preference Modeling for Longform Question Answering
Corby Rosset | Guoqing Zheng | Victor Dibia | Ahmed Awadallah | Paul Bennett
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The remarkable abilities of large language models (LLMs) like ChatGPT and GPT-4 partially stem from the post-training processes involving human preferences encoded within a reward model as part of a Reinforcement Learning from Human Feedback (RLHF) regimen. These reward models (RMs) often lack direct knowledge of why, or under what principles, the preferences annotations were made. In this study, we identify principles that guide RMs to better align with human preferences, and then develop an axiomatic framework to generate a rich variety of preference signals to uphold them. We use these axiomatic signals to train a model for the scoring answers to longform questions. Our approach yields a Preference Model with only about 220M parameters that agrees with gold human-annotated preference labels more often than GPT-4. The contributions of this work include: training a standalone preference model that can score human- and LLM-generated answers on the same scale; developing an axiomatic framework for generating training data pairs tailored to certain principles; and showing that a small amount of axiomatic signals can help small models outperform GPT-4 in preference scoring. We intend to release our axiomatic data and model.