Jinsol Park


2023

pdf bib
PreWoMe: Exploiting Presuppositions as Working Memory for Long Form Question Answering
Wookje Han | Jinsol Park | Kyungjae Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Information-seeking questions in long-form question answering (LFQA) often prove misleading due to ambiguity or false presupposition in the question. While many existing approaches handle misleading questions, they are tailored to limited questions, which are insufficient in a real-world setting with unpredictable input characteristics. In this work, we propose PreWoMe, a unified approach capable of handling any type of information-seeking question. The key idea of PreWoMe involves extracting presuppositions in the question and exploiting them as working memory to generate feedback and action about the question. Our experiment shows that PreWoMe is effective not only in tackling misleading questions but also in handling normal ones, thereby demonstrating the effectiveness of leveraging presuppositions, feedback, and action for real-world QA settings.

pdf bib
Two Examples are Better than One: Context Regularization for Gradient-based Prompt Tuning
Hyeonmin Ha | Soyoung Jung | Jinsol Park | Minjoon Seo | Seung-won Hwang | Byung-Gon Chun
Findings of the Association for Computational Linguistics: ACL 2023

Prompting has gained tremendous attention as an efficient method for the adaptation of large-scale language models. However, prompts often act against human intuition and report unstable performances, which has motivated methods that automatically find effective prompts. One popular approach is gradient-based search, which iteratively updates a (randomly) initialized prompt towards the optimal one with the guide of gradients. We propose a novel regularization method, CoRe, for gradient-based prompt tuning techniques, which guides a prompt to produce a task context properly. CoRe realizes two regularization effects — context attuning and context filtering — that improve prediction performance in a zero-shot in-context learning setting where a model makes inferences only with the prompt tuned by CoRe, without any demonstration examples for in-context learning. Context attuning guides the context generated by the input and the tuned prompt toward embedding the appropriate context for the task. In our theoretical analysis, regularizing the context extends to improving zero-shot in-context learning performance. Context filtering steers the prompt to select only the task-related context so that context attuning solely focuses on creating and sending the right task context. We evaluate CoRe on natural language understanding datasets and two large language models, GPT2-XL and GPT-J.Our training scheme shows performance improvements up to 11.9% on GPT2-XL, and up to 6.3% on GPT-J in zero-shot settings.