Ohad Rubin


2023

pdf bib
QAMPARI: A Benchmark for Open-domain Questions with Many Answers
Samuel Amouyal | Tomer Wolfson | Ohad Rubin | Ori Yoran | Jonathan Herzig | Jonathan Berant
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Existing benchmarks for open-domain question answering (ODQA) typically focus on questions whose answers are all in a single paragraph. By contrast, many natural questions, such as “What players were drafted by the Brooklyn Nets?” have a long list of answers extracted from multiple paragraphs. Answering such questions requires retrieving and reading many passages from a large corpus. We introduce QAMPARI, an ODQA benchmark, where answers are lists of entities, spread across many paragraphs. We created QAMPARI by (a) generating questions with multiple answers from Wikipedia’s knowledge graph and tables, (b) automatically pairing answers with supporting evidence in Wikipedia paragraphs, and (c) manually paraphrasing questions and validating each answer. Across a wide range of ODQA models, we find that QAMPARI is challenging in terms of both passage retrieval and answer generation, with models reaching an F1 score of 32.8 at best. We view QAMPARI as a valuable resource for ODQA research, which will aid to develop models that handle a broad range of question types, including single and multi-answer questions.

2022

pdf bib
Learning To Retrieve Prompts for In-Context Learning
Ohad Rubin | Jonathan Herzig | Jonathan Berant
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In-context learning is a recent paradigm in natural language understanding, where a large pre-trained language model (LM) observes a test instance and a few training examples as its input, and directly decodes the output without any update to its parameters. However, performance has been shown to strongly depend on the selected training examples (termed prompts). In this work, we propose an efficient method for retrieving prompts for in-context learning using annotated data and an LM. Given an input-output pair, we estimate the probability of the output given the input and a candidate training example as the prompt, and label training examples as positive or negative based on this probability. We then train an efficient dense retriever from this data, which is used to retrieve training examples as prompts at test time. We evaluate our approach on three sequence-to-sequence tasks where language utterances are mapped to meaning representations, and find that it substantially outperforms prior work and multiple baselines across the board.

2021

pdf bib
SmBoP: Semi-autoregressive Bottom-up Semantic Parsing
Ohad Rubin | Jonathan Berant
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SmBoP) that constructs at decoding step t the top-K sub-trees of height ≤ t. Our parser enjoys several benefits compared to top-down autoregressive parsing. From an efficiency perspective, bottom-up parsing allows to decode all sub-trees of a certain height in parallel, leading to logarithmic runtime complexity rather than linear. From a modeling perspective, a bottom-up parser learns representations for meaningful semantic sub-programs at each step, rather than for semantically-vacuous partial trees. We apply SmBoP on Spider, a challenging zero-shot semantic parsing benchmark, and show that SmBoP leads to a 2.2x speed-up in decoding time and a ~5x speed-up in training time, compared to a semantic parser that uses autoregressive decoding. SmBoP obtains 71.1 denotation accuracy on Spider, establishing a new state-of-the-art, and 69.5 exact match, comparable to the 69.6 exact match of the autoregressive RAT-SQL+GraPPa.

pdf bib
SmBoP: Semi-autoregressive Bottom-up Semantic Parsing
Ohad Rubin | Jonathan Berant
Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)

The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SmBoP) that constructs at decoding step t the top-K sub-trees of height ≤ t. Our parser enjoys several benefits compared to top-down autoregressive parsing. From an efficiency perspective, bottom-up parsing allows to decode all sub-trees of a certain height in parallel, leading to logarithmic runtime complexity rather than linear. From a modeling perspective, a bottom-up parser learns representations for meaningful semantic sub-programs at each step, rather than for semantically-vacuous partial trees. We apply SmBoP on Spider, a challenging zero-shot semantic parsing benchmark, and show that SmBoP leads to a 2.2x speed-up in decoding time and a ~5x speed-up in training time, compared to a semantic parser that uses autoregressive decoding. SmBoP obtains 71.1 denotation accuracy on Spider, establishing a new state-of-the-art, and 69.5 exact match, comparable to the 69.6 exact match of the autoregressive RAT-SQL+Grappa.