Rui Pan


2023

pdf bib
Grounding Visual Illusions in Language: Do Vision-Language Models Perceive Illusions Like Humans?
Yichi Zhang | Jiayi Pan | Yuchen Zhou | Rui Pan | Joyce Chai
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Vision-Language Models (VLMs) are trained on vast amounts of data captured by humans emulating our understanding of the world. However, known as visual illusions, human’s perception of reality isn’t always faithful to the physical world. This raises a key question: do VLMs have the similar kind of illusions as humans do, or do they faithfully learn to represent reality? To investigate this question, we build a dataset containing five types of visual illusions and formulate four tasks to examine visual illusions in state-of-the-art VLMs. Our findings have shown that although the overall alignment is low, larger models are closer to human perception and more susceptible to visual illusions. Our dataset and initial findings will promote a better understanding of visual illusions in humans and machines and provide a stepping stone for future computational models that can better align humans and machines in perceiving and communicating about the shared visual world. The code and data are available at [github.com/vl-illusion/dataset](https://github.com/vl-illusion/dataset).

pdf bib
DetGPT: Detect What You Need via Reasoning
Renjie Pi | Jiahui Gao | Shizhe Diao | Rui Pan | Hanze Dong | Jipeng Zhang | Lewei Yao | Jianhua Han | Hang Xu | Lingpeng Kong | Tong Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In recent years, the field of computer vision has seen significant advancements thanks to the development of large language models (LLMs). These models have enabled more effective and sophisticated interactions between humans and machines, paving the way for novel techniques that blur the lines between human and machine intelligence. In this paper, we introduce a new paradigm for object detection that we call reasoning-based object detection. Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions, allowing for a higher level of interactivity. Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors to perform reasoning within the context of the user’s instructions and the visual scene. This enables DetGPT to automatically locate the object of interest based on the user’s expressed desires, even if the object is not explicitly mentioned. For instance, if a user expresses a desire for a cold beverage, DetGPT can analyze the image, identify a fridge, and use its knowledge of typical fridge contents to locate the beverage. This flexibility makes our system applicable across a wide range of fields, from robotics and automation to autonomous driving. Overall, our proposed paradigm and DetGPT demonstrate the potential for more sophisticated and intuitive interactions between humans and machines. We hope that our proposed paradigm and approach will provide inspiration to the community and open the door to more interactive and versatile object detection systems.