Ranjay Krishna


2023

pdf bib
Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
Cheng-Yu Hsieh | Chun-Liang Li | Chih-kuan Yeh | Hootan Nakhost | Yasuhisa Fujii | Alex Ratner | Ranjay Krishna | Chen-Yu Lee | Tomas Pfister
Findings of the Association for Computational Linguistics: ACL 2023

Deploying large language models (LLMs) is challenging because they are memory inefficient and compute-intensive for practical applications. In reaction, researchers train smaller task-specific models by either finetuning with human labels or distilling using LLM-generated labels. However, finetuning and distillation require large amounts of training data to achieve comparable performance to LLMs. We introduce Distilling step-by-step, a new mechanism that (a) trains smaller models that outperform LLMs, and (b) achieves so by leveraging less training data needed by finetuning or distillation. Our method extracts LLM rationales as additional supervision for training small models within a multi-task framework. We present three findings across 4 NLP benchmarks: First, compared to both finetuning and distillation, our mechanism achieves better performance with much fewer labeled/unlabeled training examples. Second, compared to few-shot prompted LLMs, we achieve better performance using substantially smaller model sizes. Third, we reduce both the model size and the amount of data required to outperform LLMs; our finetuned 770M T5 model outperforms the few-shot prompted 540B PaLM model using only 80% of available data on a benchmark, whereas standard finetuning the same T5 model struggles to match even by using 100% of the dataset.

2021

pdf bib
Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering
Siddharth Karamcheti | Ranjay Krishna | Li Fei-Fei | Christopher Manning
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Active learning promises to alleviate the massive data needs of supervised machine learning: it has successfully improved sample efficiency by an order of magnitude on traditional tasks like topic classification and object recognition. However, we uncover a striking contrast to this promise: across 5 models and 4 datasets on the task of visual question answering, a wide variety of active learning approaches fail to outperform random selection. To understand this discrepancy, we profile 8 active learning methods on a per-example basis, and identify the problem as collective outliers – groups of examples that active learning methods prefer to acquire but models fail to learn (e.g., questions that ask about text in images or require external knowledge). Through systematic ablation experiments and qualitative visualizations, we verify that collective outliers are a general phenomenon responsible for degrading pool-based active learning. Notably, we show that active learning sample efficiency increases significantly as the number of collective outliers in the active learning pool decreases. We conclude with a discussion and prescriptive recommendations for mitigating the effects of these outliers in future work.

2020

pdf bib
Determining Question-Answer Plausibility in Crowdsourced Datasets Using Multi-Task Learning
Rachel Gardner | Maya Varma | Clare Zhu | Ranjay Krishna
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

Datasets extracted from social networks and online forums are often prone to the pitfalls of natural language, namely the presence of unstructured and noisy data. In this work, we seek to enable the collection of high-quality question-answer datasets from social media by proposing a novel task for automated quality analysis and data cleaning: question-answer (QA) plausibility. Given a machine or user-generated question and a crowd-sourced response from a social media user, we determine if the question and response are valid; if so, we identify the answer within the free-form response. We design BERT-based models to perform the QA plausibility task, and we evaluate the ability of our models to generate a clean, usable question-answer dataset. Our highest-performing approach consists of a single-task model which determines the plausibility of the question, followed by a multi-task model which evaluates the plausibility of the response as well as extracts answers (Question Plausibility AUROC=0.75, Response Plausibility AUROC=0.78, Answer Extraction F1=0.665).

2015

pdf bib
Generating Semantically Precise Scene Graphs from Textual Descriptions for Improved Image Retrieval
Sebastian Schuster | Ranjay Krishna | Angel Chang | Li Fei-Fei | Christopher D. Manning
Proceedings of the Fourth Workshop on Vision and Language