Yanbin Lu


2023

pdf bib
Improving Contextual Query Rewrite for Conversational AI Agents through User-preference Feedback Learning
Zhongkai Sun | Yingxue Zhou | Jie Hao | Xing Fan | Yanbin Lu | Chengyuan Ma | Wei Shen | Chenlei Guo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Contextual query rewriting (CQR) is a crucial component in Conversational AI agents, leveraging the contextual information from previous user-agent conversations to improve the comprehension of current user intent. However, traditional CQR methods often concentrate on supervised fine-tuning only, neglecting the opportunities to learn from user feedback to align with user preferences. Inspired by recent advances in learning from human feedback (LHF), this paper proposes a novel Preference Aligned Contextual Query Rewriting (PA-CQR) framework to enhance the CQR model’s capability in generating user preference-aligned rewrites. This paper also investigates the efficacy of various state-of-the-art feedback learning algorithms on the CQR task, and proposes a novel Dynamic Direct Preference Optimization (Dynamic DPO) algorithm to better adapt the DPO algorithm to large-scale CQR training. Experiments on large-scale real-world CQR data set demonstrate the superiority of the proposed PA-CQR framework and the Dynamic DPO.

pdf bib
Harnessing LLMs for Temporal Data - A Study on Explainable Financial Time Series Forecasting
Xinli Yu | Zheng Chen | Yanbin Lu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Applying machine learning to financial time series has been an active area of industrial research enabling innovation in market insights, risk management, strategic decision-making, and policy formation. This paper explores the novel use of Large Language Models (LLMs) for explainable financial time series forecasting, addressing challenges in cross-sequence reasoning, multi-modal data integration, and result interpretation that are inherent in traditional approaches. Focusing on NASDAQ-100 stocks, we utilize public historical stock data, company metadata, and economic/financial news. Our experiments employ GPT-4 for zero-shot/few-shot inference and Open LLaMA for instruction-based fine-tuning. The study demonstrates LLMs’ ability to generate well-reasoned decisions by leveraging cross-sequence information and extracting insights from text and price time series. We show that our LLM-based approach outperforms classic ARMA-GARCH and gradient-boosting tree models. Furthermore, fine-tuned public LLMs, such as Open-LLaMA, can generate reasonable and explainable forecasts, although they underperform compared to GPT-4.

pdf bib
Graph Meets LLM: A Novel Approach to Collaborative Filtering for Robust Conversational Understanding
Zheng Chen | Ziyan Jiang | Fan Yang | Eunah Cho | Xing Fan | Xiaojiang Huang | Yanbin Lu | Aram Galstyan
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

A Personalized Query Rewriting system strives to minimize defective queries to ensure robust conversational functionality by considering individual user behavior and preferences. It’s designed as a search-based system, maintaining a user index of past successful interactions with the conversational AI. However, this method faces challenges with unseen interactions, which refers to novel user interactions not covered by the user’s historical index. This paper introduces our Collaborative Query Rewriting approach, which utilizes underlying topological information to assist in rewriting defective queries arising from unseen user interactions. This approach begins by constructing a “User Feedback Interaction Graph” (FIG) using historical user-entity interactions. Subsequently, we traverse through the graph edges to establish an enhanced user index, referred to as the “collaborative user index”. This paper then further explores the use of Large Language Models (LLMs) in conjunction with graph traversal, leading to a significant increase in index coverage for unseen interactions. The effectiveness of our proposed approach has been proven through experiments on a large-scale real-world dataset and online A/B experiments.

pdf bib
Unified Contextual Query Rewriting
Yingxue Zhou | Jie Hao | Mukund Rungta | Yang Liu | Eunah Cho | Xing Fan | Yanbin Lu | Vishal Vasudevan | Kellen Gillespie | Zeynab Raeesy
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Query rewriting (QR) is an important technique for user friction (i.e. recovering ASR error or system error) reduction and contextual carryover (i.e. ellipsis and co-reference) in conversational AI systems. Recently, generation-based QR models have achieved promising results on these two tasks separately. Although these two tasks have many similarities such as they both use the previous dialogue along with the current request as model input, there is no unified model to solve them jointly. To this end, we propose a unified contextual query rewriting model that unifies QR for both reducing friction and contextual carryover purpose. Moreover, we involve multiple auxiliary tasks such as trigger prediction and NLU interpretation tasks to boost the performance of the rewrite. We leverage the text-to-text unified framework which uses independent tasks with weighted loss to account for task importance. Then we propose new unified multitask learning strategies including a sequential model which outputs one sentence for multi-tasks, and a hybrid model where some tasks are independent and some tasks are sequentially generated. Our experimental results demonstrate the effectiveness of the proposed unified learning methods.