Animashree Anandkumar

Also published as: Anima Anandkumar


2024

pdf bib
ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs
Pengrui Han | Rafal Kocielnik | Adhithya Saravanan | Roy Jiang | Or Sharir | Anima Anandkumar
Proceedings of the Fourth Workshop on Language Technology for Equality, Diversity, Inclusion

Large Language models (LLMs), while powerful, exhibit harmful social biases. Debiasing is often challenging due to computational costs, data constraints, and potential degradation of multi-task language capabilities. This work introduces a novel approach utilizing ChatGPT to generate synthetic training data, aiming to enhance the debiasing of LLMs. We propose two strategies: Targeted Prompting, which provides effective debiasing for known biases but necessitates prior specification of bias in question; and General Prompting, which, while slightly less effective, offers debiasing across various categories. We leverage resource-efficient LLM debiasing using adapter tuning and compare the effectiveness of our synthetic data to existing debiasing datasets. Our results reveal that: (1) ChatGPT can efficiently produce high-quality training data for debiasing other LLMs; (2) data produced via our approach surpasses existing datasets in debiasing performance while also preserving internal knowledge of a pre-trained LLM; and (3) synthetic data exhibits generalizability across categories, effectively mitigating various biases, including intersectional ones. These findings underscore the potential of synthetic data in advancing the fairness of LLMs with minimal retraining cost.

2023

pdf bib
Context Generation Improves Open Domain Question Answering
Dan Su | Mostofa Patwary | Shrimai Prabhumoye | Peng Xu | Ryan Prenger | Mohammad Shoeybi | Pascale Fung | Anima Anandkumar | Bryan Catanzaro
Findings of the Association for Computational Linguistics: EACL 2023

Closed-book question answering (QA) requires a model to directly answer an open-domain question without access to any external knowledge. Prior work on closed-book QA either directly finetunes or prompts a pretrained language model (LM) to leverage the stored knowledge. However, they do not fully exploit the parameterized knowledge. To address this inefficiency, we propose a two-stage, closed-book QA framework which employs a coarse-to-fine approach to extract the relevant knowledge and answer a question. We first generate a related context for a given question by prompting a pretrained LM. We then prompt the same LM to generate an answer using the generated context and the question. Additionally, we marginalize over the generated contexts to improve the accuracies and reduce context uncertainty. Experimental results on three QA benchmarks show that our method significantly outperforms previous closed-book QA methods. For example on TriviaQA, our method improves exact match accuracy from 55.3% to 68.6%, and is on par with open-book QA methods (68.6% vs. 68.0%). Our results show that our new methodology is able to better exploit the stored knowledge in pretrained LMs without adding extra learnable parameters or needing finetuning, and paves the way for hybrid models that integrate pretrained LMs with external knowledge.

pdf bib
Re-ViLM: Retrieval-Augmented Visual Language Model for Zero and Few-Shot Image Captioning
Zhuolin Yang | Wei Ping | Zihan Liu | Vijay Korthikanti | Weili Nie | De-An Huang | Linxi Fan | Zhiding Yu | Shiyi Lan | Bo Li | Mohammad Shoeybi | Ming-Yu Liu | Yuke Zhu | Bryan Catanzaro | Chaowei Xiao | Anima Anandkumar
Findings of the Association for Computational Linguistics: EMNLP 2023

Augmenting pretrained language models (LMs) with a vision encoder (e.g., Flamingo) has obtained state-of-the-art results in image-to-text generation. However, these models store all the knowledge within their parameters, thus often requiring enormous model parameters to model the abundant visual concepts and very rich text descriptions. Additionally, they are inefficient in incorporating new data, requiring a computational-expensive fine-tuning process. In this work, we introduce a Retrieval-augmented Visual Language Model, Re-ViLM, built upon the Flamingo, that supports retrieving the relevant knowledge from the external database for zero and in-context few-shot image-to-text generations. By storing certain knowledge explicitly in the external database, our approach reduces the number of model parameters and can easily accommodate new data during evaluation by simply updating the database. We also construct an interleaved image and text data that facilitates in-context few-shot learning capabilities.We demonstrate that Re-ViLM significantly boosts performance for image-to-text generation tasks, especially for zero-shot and few-shot generation in out-of-domain settings with 4x less parameters compared with baseline methods.

pdf bib
Shall We Pretrain Autoregressive Language Models with Retrieval? A Comprehensive Study
Boxin Wang | Wei Ping | Peng Xu | Lawrence McAfee | Zihan Liu | Mohammad Shoeybi | Yi Dong | Oleksii Kuchaiev | Bo Li | Chaowei Xiao | Anima Anandkumar | Bryan Catanzaro
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large decoder-only language models (LMs) can be largely improved in terms of perplexity by retrieval (e.g., RETRO), but its impact on text generation quality and downstream task accuracy is unclear. Thus, it is still an open question: shall we pretrain large autoregressive LMs with retrieval? To answer it, we perform a comprehensive study on a scalable pre-trained retrieval-augmented LM (i.e., RETRO) compared with standard GPT and retrieval-augmented GPT incorporated at fine-tuning or inference stages. We first provide the recipe to reproduce RETRO up to 9.5B parameters while retrieving a text corpus with 330B tokens. Based on that, we have the following novel findings: i) RETRO outperforms GPT on text generation with much less degeneration (i.e., repetition), moderately higher factual accuracy, and slightly lower toxicity with a nontoxic retrieval database. ii) On the LM Evaluation Harness benchmark, RETRO largely outperforms GPT on knowledge-intensive tasks, but is on par with GPT on other tasks. Furthermore, we introduce a simple variant of the model, RETRO++, which largely improves open-domain QA results of original RETRO (e.g., EM score +8.6 on Natural Question) and significantly outperforms retrieval-augmented GPT across different model sizes. Our findings highlight the promising direction of pretraining autoregressive LMs with retrieval as future foundation models. We release our implementation at: https://github.com/NVIDIA/Megatron-LM/tree/main/tools/retro.

2020

pdf bib
MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models
Peng Xu | Mostofa Patwary | Mohammad Shoeybi | Raul Puri | Pascale Fung | Anima Anandkumar | Bryan Catanzaro
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing pre-trained large language models have shown unparalleled generative capabilities. However, they are not controllable. In this paper, we propose MEGATRON-CNTRL, a novel framework that uses large-scale language models and adds control to text generation by incorporating an external knowledge base. Our framework consists of a keyword predictor, a knowledge retriever, a contextual knowledge ranker, and a conditional text generator. As we do not have access to ground-truth supervision for the knowledge ranker, we make use of weak supervision from sentence embedding. The empirical results show that our model generates more fluent, consistent, and coherent stories with less repetition and higher diversity compared to prior work on the ROC story dataset. We showcase the controllability of our model by replacing the keywords used to generate stories and re-running the generation process. Human evaluation results show that 77.5% of these stories are successfully controlled by the new keywords. Furthermore, by scaling our model from 124 million to 8.3 billion parameters we demonstrate that larger models improve both the quality of generation (from 74.5% to 93.0% for consistency) and controllability (from 77.5% to 91.5%).

2019

pdf bib
Multi Sense Embeddings from Topic Models
Shobhit Jain | Sravan Babu Bodapati | Ramesh Nallapati | Anima Anandkumar
Proceedings of the 3rd International Conference on Natural Language and Speech Processing

2018

pdf bib
Probabilistic FastText for Multi-Sense Word Embeddings
Ben Athiwaratkun | Andrew Wilson | Anima Anandkumar
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce Probabilistic FastText, a new model for word embeddings that can capture multiple word senses, sub-word structure, and uncertainty information. In particular, we represent each word with a Gaussian mixture density, where the mean of a mixture component is given by the sum of n-grams. This representation allows the model to share the “strength” across sub-word structures (e.g. Latin roots), producing accurate representations of rare, misspelt, or even unseen words. Moreover, each component of the mixture can capture a different word sense. Probabilistic FastText outperforms both FastText, which has no probabilistic model, and dictionary-level probabilistic embeddings, which do not incorporate subword structures, on several word-similarity benchmarks, including English RareWord and foreign language datasets. We also achieve state-of-art performance on benchmarks that measure ability to discern different meanings. Thus, our model is the first to achieve best of both the worlds: multi-sense representations while having enriched semantics on rare words.

2017

pdf bib
Deep Active Learning for Named Entity Recognition
Yanyao Shen | Hyokun Yun | Zachary Lipton | Yakov Kronrod | Animashree Anandkumar
Proceedings of the 2nd Workshop on Representation Learning for NLP

Deep neural networks have advanced the state of the art in named entity recognition. However, under typical training procedures, advantages over classical methods emerge only with large datasets. As a result, deep learning is employed only when large public datasets or a large budget for manually labeling data is available. In this work, we show otherwise: by combining deep learning with active learning, we can outperform classical methods even with a significantly smaller amount of training data.