Hailin Jin


2023

pdf bib
SCCS: Semantics-Consistent Cross-domain Summarization via Optimal Transport Alignment
Jielin Qiu | Jiacheng Zhu | Mengdi Xu | Franck Dernoncourt | Trung Bui | Zhaowen Wang | Bo Li | Ding Zhao | Hailin Jin
Findings of the Association for Computational Linguistics: ACL 2023

Multimedia summarization with multimodal output (MSMO) is a recently explored application in language grounding. It plays an essential role in real-world applications, i.e., automatically generating cover images and titles for news articles or providing introductions to online videos. However, existing methods extract features from the whole video and article and use fusion methods to select the representative one, thus usually ignoring the critical structure and varying semantics with video/document. In this work, we propose a Semantics-Consistent Cross-domain Summarization (SCCS) model based on optimal transport alignment with visual and textual segmentation. Our method first decomposes both videos and articles into segments in order to capture the structural semantics, and then follows a cross-domain alignment objective with optimal transport distance, which leverages multimodal interaction to match and select the visual and textual summary. We evaluated our method on three MSMO datasets, and achieved performance improvement by 8% & 6% of textual and 6.6% &5.7% of video summarization, respectively, which demonstrated the effectiveness of our method in producing high-quality multimodal summaries.

pdf bib
Generating Structured Pseudo Labels for Noise-resistant Zero-shot Video Sentence Localization
Minghang Zheng | Shaogang Gong | Hailin Jin | Yuxin Peng | Yang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Video sentence localization aims to locate moments in an unstructured video according to a given natural language query. A main challenge is the expensive annotation costs and the annotation bias. In this work, we study video sentence localization in a zero-shot setting, which learns with only video data without any annotation. Existing zero-shot pipelines usually generate event proposals and then generate a pseudo query for each event proposal. However, their event proposals are obtained via visual feature clustering, which is query-independent and inaccurate; and the pseudo-queries are short or less interpretable. Moreover, existing approaches ignores the risk of pseudo-label noise when leveraging them in training. To address the above problems, we propose a Structure-based Pseudo Label generation (SPL), which first generate free-form interpretable pseudo queries before constructing query-dependent event proposals by modeling the event temporal structure. To mitigate the effect of pseudo-label noise, we propose a noise-resistant iterative method that repeatedly re-weight the training sample based on noise estimation to train a grounding model and correct pseudo labels. Experiments on the ActivityNet Captions and Charades-STA datasets demonstrate the advantages of our approach. Code can be found at https://github.com/minghangz/SPL.

2021

pdf bib
StreamHover: Livestream Transcript Summarization and Annotation
Sangwoo Cho | Franck Dernoncourt | Tim Ganter | Trung Bui | Nedim Lipka | Walter Chang | Hailin Jin | Jonathan Brandt | Hassan Foroosh | Fei Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

With the explosive growth of livestream broadcasting, there is an urgent need for new summarization technology that enables us to create a preview of streamed content and tap into this wealth of knowledge. However, the problem is nontrivial due to the informal nature of spoken language. Further, there has been a shortage of annotated datasets that are necessary for transcript summarization. In this paper, we present StreamHover, a framework for annotating and summarizing livestream transcripts. With a total of over 500 hours of videos annotated with both extractive and abstractive summaries, our benchmark dataset is significantly larger than currently existing annotated corpora. We explore a neural extractive summarization model that leverages vector-quantized variational autoencoder to learn latent vector representations of spoken utterances and identify salient utterances from the transcripts to form summaries. We show that our model generalizes better and improves performance over strong baselines. The results of this study provide an avenue for future research to improve summarization solutions for efficient browsing of livestreams.

2018

pdf bib
Speeding up Context-based Sentence Representation Learning with Non-autoregressive Convolutional Decoding
Shuai Tang | Hailin Jin | Chen Fang | Zhaowen Wang | Virginia de Sa
Proceedings of the Third Workshop on Representation Learning for NLP

We propose an asymmetric encoder-decoder structure, which keeps an RNN as the encoder and has a CNN as the decoder, and the model only explores the subsequent context information as the supervision. The asymmetry in both model architecture and training pair reduces a large amount of the training time. The contribution of our work is summarized as 1. We design experiments to show that an autoregressive decoder or an RNN decoder is not necessary for the encoder-decoder type of models in terms of learning sentence representations, and based on our results, we present 2 findings. 2. The two interesting findings lead to our final model design, which has an RNN encoder and a CNN decoder, and it learns to encode the current sentence and decode the subsequent contiguous words all at once. 3. With a suite of techniques, our model performs good on downstream tasks and can be trained efficiently on a large unlabelled corpus.

2017

pdf bib
Rethinking Skip-thought: A Neighborhood based Approach
Shuai Tang | Hailin Jin | Chen Fang | Zhaowen Wang | Virginia de Sa
Proceedings of the 2nd Workshop on Representation Learning for NLP

We study the skip-thought model with neighborhood information as weak supervision. More specifically, we propose a skip-thought neighbor model to consider the adjacent sentences as a neighborhood. We train our skip-thought neighbor model on a large corpus with continuous sentences, and then evaluate the trained model on 7 tasks, which include semantic relatedness, paraphrase detection, and classification benchmarks. Both quantitative comparison and qualitative investigation are conducted. We empirically show that, our skip-thought neighbor model performs as well as the skip-thought model on evaluation tasks. In addition, we found that, incorporating an autoencoder path in our model didn’t aid our model to perform better, while it hurts the performance of the skip-thought model.