Haoran Xie


2023

pdf bib
Recurrent Attention Networks for Long-text Modeling
Xianming Li | Zongxi Li | Xiaotian Luo | Haoran Xie | Xing Lee | Yingbin Zhao | Fu Lee Wang | Qing Li
Findings of the Association for Computational Linguistics: ACL 2023

Self-attention-based models have achieved remarkable progress in short-text mining. However, the quadratic computational complexities restrict their application in long text processing. Prior works have adopted the chunking strategy to divide long documents into chunks and stack a self-attention backbone with the recurrent structure to extract semantic representation. Such an approach disables parallelization of the attention mechanism, significantly increasing the training cost and raising hardware requirements. Revisiting the self-attention mechanism and the recurrent structure, this paper proposes a novel long-document encoding model, Recurrent Attention Network (RAN), to enable the recurrent operation of self-attention. Combining the advantages from both sides, the well-designed RAN is capable of extracting global semantics in both token-level and document-level representations, making it inherently compatible with both sequential and classification tasks, respectively. Furthermore, RAN is computationally scalable as it supports parallelization on long document processing. Extensive experiments demonstrate the long-text encoding ability of the proposed RAN model on both classification and sequential tasks, showing its potential for a wide range of applications.

2021

pdf bib
Tree-Structured Topic Modeling with Nonparametric Neural Variational Inference
Ziye Chen | Cheng Ding | Zusheng Zhang | Yanghui Rao | Haoran Xie
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Topic modeling has been widely used for discovering the latent semantic structure of documents, but most existing methods learn topics with a flat structure. Although probabilistic models can generate topic hierarchies by introducing nonparametric priors like Chinese restaurant process, such methods have data scalability issues. In this study, we develop a tree-structured topic model by leveraging nonparametric neural variational inference. Particularly, the latent components of the stick-breaking process are first learned for each document, then the affiliations of latent components are modeled by the dependency matrices between network layers. Utilizing this network structure, we can efficiently extract a tree-structured topic hierarchy with reasonable structure, low redundancy, and adaptable widths. Experiments on real-world datasets validate the effectiveness of our method.

2020

pdf bib
Neural Mixed Counting Models for Dispersed Topic Discovery
Jiemin Wu | Yanghui Rao | Zusheng Zhang | Haoran Xie | Qing Li | Fu Lee Wang | Ziye Chen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Mixed counting models that use the negative binomial distribution as the prior can well model over-dispersed and hierarchically dependent random variables; thus they have attracted much attention in mining dispersed document topics. However, the existing parameter inference method like Monte Carlo sampling is quite time-consuming. In this paper, we propose two efficient neural mixed counting models, i.e., the Negative Binomial-Neural Topic Model (NB-NTM) and the Gamma Negative Binomial-Neural Topic Model (GNB-NTM) for dispersed topic discovery. Neural variational inference algorithms are developed to infer model parameters by using the reparameterization of Gamma distribution and the Gaussian approximation of Poisson distribution. Experiments on real-world datasets indicate that our models outperform state-of-the-art baseline models in terms of perplexity and topic coherence. The results also validate that both NB-NTM and GNB-NTM can produce explainable intermediate variables by generating dispersed proportions of document topics.

2018

pdf bib
Siamese Network-Based Supervised Topic Modeling
Minghui Huang | Yanghui Rao | Yuwei Liu | Haoran Xie | Fu Lee Wang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Label-specific topics can be widely used for supporting personality psychology, aspect-level sentiment analysis, and cross-domain sentiment classification. To generate label-specific topics, several supervised topic models which adopt likelihood-driven objective functions have been proposed. However, it is hard for them to get a precise estimation on both topic discovery and supervised learning. In this study, we propose a supervised topic model based on the Siamese network, which can trade off label-specific word distributions with document-specific label distributions in a uniform framework. Experiments on real-world datasets validate that our model performs competitive in topic discovery quantitatively and qualitatively. Furthermore, the proposed model can effectively predict categorical or real-valued labels for new documents by generating word embeddings from a label-specific topical space.

2017

pdf bib
A Network Framework for Noisy Label Aggregation in Social Media
Xueying Zhan | Yaowei Wang | Yanghui Rao | Haoran Xie | Qing Li | Fu Lee Wang | Tak-Lam Wong
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

This paper focuses on the task of noisy label aggregation in social media, where users with different social or culture backgrounds may annotate invalid or malicious tags for documents. To aggregate noisy labels at a small cost, a network framework is proposed by calculating the matching degree of a document’s topics and the annotators’ meta-data. Unlike using the back-propagation algorithm, a probabilistic inference approach is adopted to estimate network parameters. Finally, a new simulation method is designed for validating the effectiveness of the proposed framework in aggregating noisy labels.