Majd Hawasly


2024

pdf bib
LAraBench: Benchmarking Arabic AI with Large Language Models
Ahmed Abdelali | Hamdy Mubarak | Shammur Chowdhury | Maram Hasanain | Basel Mousi | Sabri Boughorbel | Samir Abdaljalil | Yassine El Kheir | Daniel Izham | Fahim Dalvi | Majd Hawasly | Nizi Nazar | Youssef Elshahawy | Ahmed Ali | Nadir Durrani | Natasa Milic-Frayling | Firoj Alam
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in Large Language Models (LLMs) have significantly influenced the landscape of language and speech research. Despite this progress, these models lack specific benchmarking against state-of-the-art (SOTA) models tailored to particular languages and tasks. LAraBench addresses this gap for Arabic Natural Language Processing (NLP) and Speech Processing tasks, including sequence tagging and content classification across different domains. We utilized models such as GPT-3.5-turbo, GPT-4, BLOOMZ, Jais-13b-chat, Whisper, and USM, employing zero and few-shot learning techniques to tackle 33 distinct tasks across 61 publicly available datasets. This involved 98 experimental setups, encompassing ~296K data points, ~46 hours of speech, and 30 sentences for Text-to-Speech (TTS). This effort resulted in 330+ sets of experiments. Our analysis focused on measuring the performance gap between SOTA models and LLMs. The overarching trend observed was that SOTA models generally outperformed LLMs in zero-shot learning, with a few exceptions. Notably, larger computational models with few-shot learning techniques managed to reduce these performance gaps. Our findings provide valuable insights into the applicability of LLMs for Arabic NLP and speech processing tasks.

pdf bib
Scaling up Discovery of Latent Concepts in Deep NLP Models
Majd Hawasly | Fahim Dalvi | Nadir Durrani
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the revolution caused by deep NLP models, they remain black boxes, necessitating research to understand their decision-making processes. A recent work by Dalvi et al. (2022) carried out representation analysis through the lens of clustering latent spaces within pre-trained models (PLMs), but that approach is limited to small scale due to the high cost of running Agglomerative hierarchical clustering. This paper studies clustering algorithms in order to scale the discovery of encoded concepts in PLM representations to larger datasets and models. We propose metrics for assessing the quality of discovered latent concepts and use them to compare the studied clustering algorithms. We found that K-Means-based concept discovery significantly enhances efficiency while maintaining the quality of the obtained concepts. Furthermore, we demonstrate the practicality of this newfound efficiency by scaling latent concept discovery to LLMs and phrasal concepts.

2023

pdf bib
Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction Following: A Case Study of Arabic
Sabri Boughorbel | Majd Hawasly
Proceedings of ArabicNLP 2023

While significant progress has been made in benchmarking Large Language Models (LLMs) across various tasks, there is a lack of comprehensive evaluation of their abilities in responding to multi-turn instructions in less-commonly tested languages like Arabic. Our paper offers a detailed examination of the proficiency of open LLMs in such scenarios in Arabic. Utilizing a customized Arabic translation of the MT-Bench benchmark suite, we employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks. Our findings reveal variations in model responses on different task categories, e.g., logic vs. literacy, when instructed in English or Arabic. We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data. Finally, we hypothesize that an ensemble of small, open LLMs could perform competitively to proprietary LLMs on the benchmark.

2017

pdf bib
Natural Language Grounding and Grammar Induction for Robotic Manipulation Commands
Muhannad Alomari | Paul Duckworth | Majd Hawasly | David C. Hogg | Anthony G. Cohn
Proceedings of the First Workshop on Language Grounding for Robotics

We present a cognitively plausible system capable of acquiring knowledge in language and vision from pairs of short video clips and linguistic descriptions. The aim of this work is to teach a robot manipulator how to execute natural language commands by demonstration. This is achieved by first learning a set of visual ‘concepts’ that abstract the visual feature spaces into concepts that have human-level meaning. Second, learning the mapping/grounding between words and the extracted visual concepts. Third, inducing grammar rules via a semantic representation known as Robot Control Language (RCL). We evaluate our approach against state-of-the-art supervised and unsupervised grounding and grammar induction systems, and show that a robot can learn to execute never seen-before commands from pairs of unlabelled linguistic and visual inputs.