Marc-Antoine Rondeau


2020

pdf bib
Distilling Structured Knowledge for Text-Based Relational Reasoning
Jin Dong | Marc-Antoine Rondeau | William L. Hamilton
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

There is an increasing interest in developing text-based relational reasoning systems, which are capable of systematically reasoning about the relationships between entities mentioned in a text. However, there remains a substantial performance gap between NLP models for relational reasoning and models based on graph neural networks (GNNs), which have access to an underlying symbolic representation of the text. In this work, we investigate how the structured knowledge of a GNN can be distilled into various NLP models in order to improve their performance. We first pre-train a GNN on a reasoning task using structured inputs and then incorporate its knowledge into an NLP model (e.g., an LSTM) via knowledge distillation. To overcome the difficulty of cross-modal knowledge transfer, we also employ a contrastive learning based module to align the latent representations of NLP models and the GNN. We test our approach with two state-of-the-art NLP models on 13 different inductive reasoning datasets from the CLUTRR benchmark and obtain significant improvements.

2018

pdf bib
Systematic Error Analysis of the Stanford Question Answering Dataset
Marc-Antoine Rondeau | T. J. Hazen
Proceedings of the Workshop on Machine Reading for Question Answering

We analyzed the outputs of multiple question answering (QA) models applied to the Stanford Question Answering Dataset (SQuAD) to identify the core challenges for QA systems on this data set. Through an iterative process, challenging aspects were hypothesized through qualitative analysis of the common error cases. A classifier was then constructed to predict whether SQuAD test examples were likely to be difficult for systems to answer based on features associated with the hypothesized aspects. The classifier’s performance was used to accept or reject each aspect as an indicator of difficulty. With this approach, we ensured that our hypotheses were systematically tested and not simply accepted based on our pre-existing biases. Our explanations are not accepted based on human evaluation of individual examples. This process also enabled us to identify the primary QA strategy learned by the models, i.e., systems determined the acceptable answer type for a question and then selected the acceptable answer span of that type containing the highest density of words present in the question within its local vicinity in the passage.