Rob Goot


2024

pdf bib
Where are we Still Split on Tokenization?
Rob Goot
Findings of the Association for Computational Linguistics: EACL 2024

Many Natural Language Processing (NLP) tasks are labeled on the token level, forthese tasks, the first step is to identify the tokens (tokenization). Becausethis step is often considered to be a solved problem, gold tokenization iscommonly assumed. In this paper, we propose an efficient method fortokenization with subword-based language models, and reflect on the status ofperformance on the tokenization task by evaluating on 122 languages in 20different scripts. We show that our proposed model performs on par with thestate-of-the-art, and that tokenization performance is mainly dependent on theamount and consistency of annotated data. We conclude that besidesinconsistencies in the data and exceptional cases the task can be consideredsolved for Latin languages for in-dataset settings (>99.5 F1). However,performance is 0.75 F1 point lower on average for datasets in other scripts andperformance deteriorates in cross-dataset setups.

pdf bib
Entity Linking in the Job Market Domain
Mike Zhang | Rob Goot | Barbara Plank
Findings of the Association for Computational Linguistics: EACL 2024

In Natural Language Processing, entity linking (EL) has centered around Wikipedia, but yet remains underexplored for the job market domain. Disambiguating skill mentions can help us get insight into the current labor market demands. In this work, we are the first to explore EL in this domain, specifically targeting the linkage of occupational skills to the ESCO taxonomy (le Vrang et al., 2014). Previous efforts linked coarse-grained (full) sentences to a corresponding ESCO skill. In this work, we link more fine-grained span-level mentions of skills. We tune two high-performing neural EL models, a bi-encoder (Wu et al., 2020) and an autoregressive model (Cao et al., 2021), on a synthetically generated mention–skill pair dataset and evaluate them on a human-annotated skill-linking benchmark. Our findings reveal that both models are capable of linking implicit mentions of skills to their correct taxonomy counterparts. Empirically, BLINK outperforms GENRE in strict evaluation, but GENRE performs better in loose evaluation (accuracy@k).

pdf bib
Deep Learning-based Computational Job Market Analysis: A Survey on Skill Extraction and Classification from Job Postings
Elena Senger | Mike Zhang | Rob Goot | Barbara Plank
Proceedings of the First Workshop on Natural Language Processing for Human Resources (NLP4HR 2024)

Recent years have brought significant advances to Natural Language Processing (NLP), which enabled fast progress in the field of computational job market analysis. Core tasks in this application domain are skill extraction and classification from job postings. Because of its quick growth and its interdisciplinary nature, there is no exhaustive assessment of this field. This survey aims to fill this gap by providing a comprehensive overview of deep learning methodologies, datasets, and terminologies specific to NLP-driven skill extraction. Our comprehensive cataloging of publicly available datasets addresses the lack of consolidated information on dataset creation and characteristics. Finally, the focus on terminology addresses the current lack of consistent definitions for important concepts, such as hard and soft skills, and terms relating to skill extraction and classification.

pdf bib
Big City Bias: Evaluating the Impact of Metropolitan Size on Computational Job Market Abilities of Language Models
Charlie Campanella | Rob Goot
Proceedings of the First Workshop on Natural Language Processing for Human Resources (NLP4HR 2024)

Large language models have emerged as a useful technology for job matching, for both candidates and employers. Job matching is often based on a particular geographic location, such as a city or region. However, LMs have known biases, commonly derived from their training data. In this work, we aim to quantify the metropolitan size bias encoded within large language models, evaluating zero-shot salary, employer presence, and commute duration predictions in 384 of the United States’ metropolitan regions. Across all benchmarks, we observe correlations between metropolitan population and the accuracy of predictions, with the smallest 10 metropolitan regions showing upwards of 300% worse benchmark performance than the largest 10.

pdf bib
NNOSE: Nearest Neighbor Occupational Skill Extraction
Mike Zhang | Rob Goot | Min-Yen Kan | Barbara Plank
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

The labor market is changing rapidly, prompting increased interest in the automatic extraction of occupational skills from text. With the advent of English benchmark job description datasets, there is a need for systems that handle their diversity well. We tackle the complexity in occupational skill datasets tasks—combining and leveraging multiple datasets for skill extraction, to identify rarely observed skills within a dataset, and overcoming the scarcity of skills across datasets. In particular, we investigate the retrieval-augmentation of language models, employing an external datastore for retrieving similar skills in a dataset-unifying manner. Our proposed method, Nearest Neighbor Occupational Skill Extraction (NNOSE) effectively leverages multiple datasets by retrieving neighboring skills from other datasets in the datastore. This improves skill extraction without additional fine-tuning. Crucially, we observe a performance gain in predicting infrequent patterns, with substantial gains of up to 30% span-F1 in cross-dataset settings.