Robert Jimerson


2023

pdf bib
An (unhelpful) guide to selecting the best ASR architecture for your under-resourced language
Robert Jimerson | Zoey Liu | Emily Prud’hommeaux
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Advances in deep neural models for automatic speech recognition (ASR) have yielded dramatic improvements in ASR quality for resource-rich languages, with English ASR now achieving word error rates comparable to that of human transcribers. The vast majority of the world’s languages, however, lack the quantity of data necessary to approach this level of accuracy. In this paper we use four of the most popular ASR toolkits to train ASR models for eleven languages with limited ASR training resources: eleven widely spoken languages of Africa, Asia, and South America, one endangered language of Central America, and three critically endangered languages of North America. We find that no single architecture consistently outperforms any other. These differences in performance so far do not appear to be related to any particular feature of the datasets or characteristics of the languages. These findings have important implications for future research in ASR for under-resourced languages. ASR systems for languages with abundant existing media and available speakers may derive the most benefit simply by collecting large amounts of additional acoustic and textual training data. Communities using ASR to support endangered language documentation efforts, who cannot easily collect more data, might instead focus on exploring multiple architectures and hyperparameterizations to optimize performance within the constraints of their available data and resources.

2021

pdf bib
Morphological Segmentation for Seneca
Zoey Liu | Robert Jimerson | Emily Prud’hommeaux
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

This study takes up the task of low-resource morphological segmentation for Seneca, a critically endangered and morphologically complex Native American language primarily spoken in what is now New York State and Ontario. The labeled data in our experiments comes from two sources: one digitized from a publicly available grammar book and the other collected from informal sources. We treat these two sources as distinct domains and investigate different evaluation designs for model selection. The first design abides by standard practices and evaluate models with the in-domain development set, while the second one carries out evaluation using a development domain, or the out-of-domain development set. Across a series of monolingual and crosslinguistic training settings, our results demonstrate the utility of neural encoder-decoder architecture when coupled with multi-task learning.

2020

pdf bib
Fully Convolutional ASR for Less-Resourced Endangered Languages
Bao Thai | Robert Jimerson | Raymond Ptucha | Emily Prud’hommeaux
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)

The application of deep learning to automatic speech recognition (ASR) has yielded dramatic accuracy increases for languages with abundant training data, but languages with limited training resources have yet to see accuracy improvements on this scale. In this paper, we compare a fully convolutional approach for acoustic modelling in ASR with a variety of established acoustic modeling approaches. We evaluate our method on Seneca, a low-resource endangered language spoken in North America. Our method yields word error rates up to 40% lower than those reported using both standard GMM-HMM approaches and established deep neural methods, with a substantial reduction in training time. These results show particular promise for languages like Seneca that are both endangered and lack extensive documentation.