Ruochen Li


2016

pdf bib
Convolution-Enhanced Bilingual Recursive Neural Network for Bilingual Semantic Modeling
Jinsong Su | Biao Zhang | Deyi Xiong | Ruochen Li | Jianmin Yin
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Estimating similarities at different levels of linguistic units, such as words, sub-phrases and phrases, is helpful for measuring semantic similarity of an entire bilingual phrase. In this paper, we propose a convolution-enhanced bilingual recursive neural network (ConvBRNN), which not only exploits word alignments to guide the generation of phrase structures but also integrates multiple-level information of the generated phrase structures into bilingual semantic modeling. In order to accurately learn the semantic hierarchy of a bilingual phrase, we develop a recursive neural network to constrain the learned bilingual phrase structures to be consistent with word alignments. Upon the generated source and target phrase structures, we stack a convolutional neural network to integrate vector representations of linguistic units on the structures into bilingual phrase embeddings. After that, we fully incorporate information of different linguistic units into a bilinear semantic similarity model. We introduce two max-margin losses to train the ConvBRNN model: one for the phrase structure inference and the other for the semantic similarity model. Experiments on NIST Chinese-English translation tasks demonstrate the high quality of the generated bilingual phrase structures with respect to word alignments and the effectiveness of learned semantic similarities on machine translation.