Sachin Mehta


2023

pdf bib
SHARCS: Efficient Transformers Through Routing with Dynamic Width Sub-networks
Mohammadreza Salehi | Sachin Mehta | Aditya Kusupati | Ali Farhadi | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: EMNLP 2023

We introduce SHARCS for adaptive inference that takes into account the hardness of input samples. SHARCS can train a router on any transformer network, enabling the model to direct different samples to sub-networks with varying widths. Our experiments demonstrate that: (1) SHARCS outperforms or complements existing per-sample adaptive inference methods across various classification tasks in terms of accuracy vs. FLOPs; (2) SHARCS generalizes across different architectures and can be even applied to compressed and efficient transformer encoders to further improve their efficiency; (3) SHARCS can provide a 2 times inference speed up at an insignificant drop in accuracy.

2021

pdf bib
Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text
Christopher Clark | Jordi Salvador | Dustin Schwenk | Derrick Bonafilia | Mark Yatskar | Eric Kolve | Alvaro Herrasti | Jonghyun Choi | Sachin Mehta | Sam Skjonsberg | Carissa Schoenick | Aaron Sarnat | Hannaneh Hajishirzi | Aniruddha Kembhavi | Oren Etzioni | Ali Farhadi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Communicating with humans is challenging for AIs because it requires a shared understanding of the world, complex semantics (e.g., metaphors or analogies), and at times multi-modal gestures (e.g., pointing with a finger, or an arrow in a diagram). We investigate these challenges in the context of Iconary, a collaborative game of drawing and guessing based on Pictionary, that poses a novel challenge for the research community. In Iconary, a Guesser tries to identify a phrase that a Drawer is drawing by composing icons, and the Drawer iteratively revises the drawing to help the Guesser in response. This back-and-forth often uses canonical scenes, visual metaphor, or icon compositions to express challenging words, making it an ideal test for mixing language and visual/symbolic communication in AI. We propose models to play Iconary and train them on over 55,000 games between human players. Our models are skillful players and are able to employ world knowledge in language models to play with words unseen during training.

2020

pdf bib
MedICaT: A Dataset of Medical Images, Captions, and Textual References
Sanjay Subramanian | Lucy Lu Wang | Ben Bogin | Sachin Mehta | Madeleine van Zuylen | Sravanthi Parasa | Sameer Singh | Matt Gardner | Hannaneh Hajishirzi
Findings of the Association for Computational Linguistics: EMNLP 2020

Understanding the relationship between figures and text is key to scientific document understanding. Medical figures in particular are quite complex, often consisting of several subfigures (75% of figures in our dataset), with detailed text describing their content. Previous work studying figures in scientific papers focused on classifying figure content rather than understanding how images relate to the text. To address challenges in figure retrieval and figure-to-text alignment, we introduce MedICaT, a dataset of medical images in context. MedICaT consists of 217K images from 131K open access biomedical papers, and includes captions, inline references for 74% of figures, and manually annotated subfigures and subcaptions for a subset of figures. Using MedICaT, we introduce the task of subfigure to subcaption alignment in compound figures and demonstrate the utility of inline references in image-text matching. Our data and code can be accessed at https://github.com/allenai/medicat.

2018

pdf bib
Pyramidal Recurrent Unit for Language Modeling
Sachin Mehta | Rik Koncel-Kedziorski | Mohammad Rastegari | Hannaneh Hajishirzi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

LSTMs are powerful tools for modeling contextual information, as evidenced by their success at the task of language modeling. However, modeling contexts in very high dimensional space can lead to poor generalizability. We introduce the Pyramidal Recurrent Unit (PRU), which enables learning representations in high dimensional space with more generalization power and fewer parameters. PRUs replace the linear transformation in LSTMs with more sophisticated interactions such as pyramidal or grouped linear transformations. This architecture gives strong results on word-level language modeling while reducing parameters significantly. In particular, PRU improves the perplexity of a recent state-of-the-art language model by up to 1.3 points while learning 15-20% fewer parameters. For similar number of model parameters, PRU outperforms all previous RNN models that exploit different gating mechanisms and transformations. We provide a detailed examination of the PRU and its behavior on the language modeling tasks. Our code is open-source and available at https://sacmehta.github.io/PRU/.