Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts)

Yun-Nung (Vivian) Chen, Margot Margot, Siva Reddy (Editors)


Anthology ID:
2023.acl-tutorials
Month:
July
Year:
2023
Address:
Toronto, Canada
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2023.acl-tutorials
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/2023.acl-tutorials.pdf

pdf bib
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts)
Yun-Nung (Vivian) Chen | Margot Margot | Siva Reddy

pdf bib
Goal Awareness for Conversational AI: Proactivity, Non-collaborativity, and Beyond
Yang Deng | Wenqiang Lei | Minlie Huang | Tat-Seng Chua

Conversational systems are envisioned to provide social support or functional service to human users via natural language interactions. Conventional conversation researches mainly focus on the responseability of the system, such as dialogue context understanding and response generation, but overlooks the design of an essential property in intelligent conversations, i.e., goal awareness. The awareness of goals means the state of not only being responsive to the users but also aware of the target conversational goal and capable of leading the conversation towards the goal, which is a significant step towards higher-level intelligence and artificial consciousness. It can not only largely improve user engagement and service efficiency in the conversation, but also empower the system to handle more complicated conversation tasks that involve strategical and motivational interactions. In this tutorial, we will introduce the recent advances on the design of agent’s awareness of goals in a wide range of conversational systems.

pdf bib
Complex Reasoning in Natural Language
Wenting Zhao | Mor Geva | Bill Yuchen Lin | Michihiro Yasunaga | Aman Madaan | Tao Yu

Teaching machines to reason over texts has been a long-standing goal of natural language processing (NLP). To this end, researchers have designed a diverse set of complex reasoning tasks that involve compositional reasoning, knowledge retrieval, grounding, commonsense reasoning, etc. A standard choice for building systems that perform a desired type of reasoning is to fine-tune a pretrained language model (LM) on specific downstream tasks. However, recent research has demonstrated that such a straightforward approach is often brittle. For example, Elazar et al. (2021) and Branco et al. (2021) show that, on question-answering (QA) tasks, similar performance can be achieved with questions removed from the inputs. Min et al. (2019), Chen and Durrett (2019), and Tang et al. (2021) show that models trained on multi-hop QA do not generalize to answer single-hop questions. The reasoning capabilities of these models thus remain at a surface level, i.e., exploiting data patterns. Consequently, augmenting LMs with techniques that make them robust and effective becomes an active research area. We will start the tutorial by providing an overview of complex reasoning tasks where the standard application of pretrained language models fails. This tutorial then reviews recent promising directions for tackling these tasks. Specifically, we focus on the following groups of approaches that explicitly consider problem structures: (1) knowledge-augmented methods, where the knowledge is either incorporated during fine-tuning or pretraining; (2) few-shot prompting methods, which effectively guide the models to follow instructions; (3) neuro-symbolic methods, which produce explicit intermediate representations; and, (4) rationale-based methods, one of the most popular forms of the neuro-symbolic methods, which highlight subsets of input as explanations for individual model predictions.

pdf bib
Everything you need to know about Multilingual LLMs: Towards fair, performant and reliable models for languages of the world
Sunayana Sitaram | Monojit Choudhury | Barun Patra | Vishrav Chaudhary | Kabir Ahuja | Kalika Bali

This tutorial will describe various aspects of scaling up language technologies to many of the world’s languages by describing the latest research in Massively Multilingual Language Models (MMLMs). We will cover topics such as data collection, training and fine-tuning of models, Responsible AI issues such as fairness, bias and toxicity, linguistic diversity and evaluation in the context of MMLMs, specifically focusing on issues in non-English and low-resource languages. Further, we will also talk about some of the real-world challenges in deploying these models in language communities in the field. With the performance of MMLMs improving in the zero-shot setting for many languages, it is now becoming feasible to use them for building language technologies in many languages of the world, and this tutorial will provide the computational linguistics community with unique insights from the latest research in multilingual models.

pdf bib
Generating Text from Language Models
Afra Amini | Ryan Cotterell | John Hewitt | Luca Malagutti | Clara Meister | Tiago Pimentel

An increasingly large percentage of natural language processing (NLP) tasks center around the generation of text from probabilistic language models. Despite this trend, techniques for improving or specifying preferences in these generated texts rely mostly on intuition-based heuristics. Further, there lacks a unified presentation of their motivations, practical implementation, successes and pitfalls. Practitioners must, therefore, choose somewhat blindly between generation algorithms—like top-p sampling or beam search—which can lead to wildly different results. At the same time, language generation research continues to criticize and improve the standard toolboxes, further adding entropy to the state of the field. In this tutorial, we will provide a centralized and cohesive discussion of critical considerations when choosing how to generate from a language model. We will cover a wide range of empirically-observed problems (like degradation, hallucination, repetition) and their corresponding proposed algorithmic solutions from recent research (like top-p sampling and its successors). We will then discuss a subset of these algorithms under a unified light; most stochastic generation strategies can be framed as locally adapting the probabilities of a model to avoid failure cases. Finally, we will then cover methods in controlled generation, that go beyond just ensuring coherence to ensure text exhibits specific desired properties. We aim for NLP practitioners and researchers to leave our tutorial with a unified framework which they can use to evaluate and contribute to the latest research in language generation.

pdf bib
Indirectly Supervised Natural Language Processing
Wenpeng Yin | Muhao Chen | Ben Zhou | Qiang Ning | Kai-Wei Chang | Dan Roth

This tutorial targets researchers and practitioners who are interested in ML technologies for NLP from indirect supervision. In particular, we will present a diverse thread of indirect supervision studies that try to answer the following questions: (i) when and how can we provide supervision for a target task T, if all we have is data that corresponds to a “related” task T′? (ii) humans do not use exhaustive supervision; they rely on occasional feedback, and learn from incidental signals from various sources; how can we effectively incorporate such supervision in machine learning? (iii) how can we leverage multi-modal supervision to help NLP? To the end, we will discuss several lines of research that address those challenges, including (i) indirect supervision from T ′ that handles T with outputs spanning from a moderate size to an open space, (ii) the use of sparsely occurring and incidental signals, such as partial labels, noisy labels, knowledge-based constraints, and cross-domain or cross-task annotations—all having statistical associations with the task, (iii) principled ways to measure and understand why these incidental signals can contribute to our target tasks, and (iv) indirect supervision from vision-language signals. We will conclude the tutorial by outlining directions for further investigation.

pdf bib
Retrieval-based Language Models and Applications
Akari Asai | Sewon Min | Zexuan Zhong | Danqi Chen

Retrieval-based language models (LMs) have shown impressive performance on diverse NLP tasks. In this tutorial, we will provide a comprehensive and coherent overview of recent advances in retrieval-based LMs. We will start by providing preliminaries covering the foundation of LMs (e.g., masked LMs, autoregressive LMs) and retrieval systems (e.g., nearest-neighbor search). We will then detail recent progress in retrieval-based models, focusing on their model architectures and learning approaches. Finally, we will show how retrieval-based LMs are adapted to downstream applications, and extended to multilingual and multi-modal settings. Finally, we will use an exercise to showcase the effectiveness of retrieval-based LMs.